Micro-Raman spectroscopic visualization of lattice vibrations and strain in He- implanted single-crystal LiNbO3
نویسندگان
چکیده
Scanning micro-Raman spectroscopy has been utilized to image and investigate strain in He-implanted congruent LiNbO3 samples. By using abruptly patterned implanted samples, we show that the spatial twodimensional mapping of the Raman spectral peaks can be used to image the strain distribution and determine its absolute magnitude. We demonstrate that both shortand long-range length-scale in-plane and out-of-plane strain and stress states can be determined using the secular equations of phonondeformation-potential theory. We also show that two-dimensional Raman imaging can be used to visualize the relaxation of strain in the crystal during low-temperature annealing. ©2014 Optical Society of America OCIS codes: (130.3730) Lithium niobate; (160.4670) Optical materials; (300.6450) Spectroscopy, Raman; (310.3840) Materials and process characterization. References and links 1. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford University, 2001). 2. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007). 3. M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, “Experimental and theoretical characterization of a lithium niobate photonic crystal,” Appl. Phys. Lett. 87(24), 241101 (2005). 4. F. Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007). 5. M. Levy, R. M. Osgood, Jr., R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of singlecrystal lithium niobate films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998). 6. F. Schrempel, Th. Gischkat, H. Hartung, E. B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res. B 250(1–2), 164–168 (2006). 7. A. Kling, M. F. da Silva, J. C. Soares, P. F. P. Fichtner, L. Amaral, and F. Zawislak, “Defect evolution and characterization in He-implanted LiNbO3,” Nucl. Instrum. Methods Phys. Res. B 175–177(0), 394–397 (2001). 8. A. Meldrum, L. A. Boatner, W. J. Weber, and R. C. Ewing, “Amorphization and recrystallization of the ABO3 oxides,” J. Nucl. Mater. 300(2-3), 242–254 (2002). 9. T. A. Ramadan, M. Levy, and R. M. Osgood, Jr., “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,” Appl. Phys. Lett. 76(11), 1407 (2000). 10. A. Ródenas, A. H. Nejadmalayeri, D. Jaque, and P. Herman, “Confocal Raman imaging of optical waveguides in LiNbO3 fabricated by ultrafast high-repetition rate laser-writing,” Opt. Express 16(18), 13979–13989 (2008). 11. J. G. Scott, S. Mailis, C. L. Sones, and R. W. Eason, “A Raman study of single-crystal congruent lithium niobate following electric-field repoling,” Appl. Phys. A: Mater. 79(3), 691–696 (2004). 12. P. Capek, G. Stone, V. Dierolf, C. Althouse, and V. Gopolan, “Raman studies of ferroelectric domain walls in lithium tantalate and niobate,” Phys. Status Solidi C 4(3), 830–833 (2007). 13. G. Stone and V. Dierolf, “Influence of ferroelectric domain walls on the Raman scattering process in lithium tantalate and niobate,” Opt. Lett. 37(6), 1032–1034 (2012). 14. P. S. Zelenovskiy, M. D. Fontana, V. Y. Shur, P. Bourson, and D. K. Kuznetsov, “Raman visualization of microand nanoscale domain structures in lithium niobate,” Appl. Phys., A Mater. Sci. Process. 99(4), 741–744 (2010). #202508 $15.00 USD Received 4 Dec 2013; revised 19 Jan 2014; accepted 20 Jan 2014; published 24 Jan 2014 (C) 2014 OSA 1 February 2014 | Vol. 4, No. 2 | DOI:10.1364/OME.4.000338 | OPTICAL MATERIALS EXPRESS 338 15. J. Olivares, A. García-Navarro, G. García, F. Agulló-López, F. Agulló-Rueda, A. García-Cabañes, and M. Carrascosa, “Buried amorphous layers by electronic excitation in ion-beam irradiated lithium niobate: Structure and kinetics,” J. Appl. Phys. 101(3), 033512 (2007). 16. D. Jaque, F. Chen, and Y. Tan, “Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett. 92(16), 161908 (2008). 17. N. Dong, D. Jaque, F. Chen, and Q. Lu, “Second harmonic and Raman imaging of He implanted KTiOPO4 waveguides,” Opt. Express 19(15), 13934–13939 (2011). 18. M. Quintanilla, E. M. Rodríguez, E. Cantelar, F. Cussó, and C. Domingo, “Micro-Raman characterization of Zndiffused channel waveguides in Tm:LiNbO3.,” Opt. Express 18(6), 5449–5458 (2010). 19. I. De Wolf, “Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits,” Semicond. Sci. Technol. 11(2), 139–154 (1996). 20. T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90(3), 031115 (2007). 21. D. G. Schlom, L.-Q. Chen, C.-B. Eom, K. M. Rabe, S. K. Streiffer, and J.-M. Triscone, “Strain tuning of ferroelectric thin films,” Annu. Rev. Mater. Res. 37(1), 589–626 (2007). 22. J. Ziegler, 2008, http://www.srim.org. 23. I. R. Lewis and H. Edwards, Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line (Marcel Dekker, 2001). 24. K. K. Wong, ed., Properties of Lithium Niobate (INSPEC, The Institution of Electrical Engineers, 2002). 25. S. M. Kostritskii and P. Moretti, “Micro-Raman study of defect structure and phonon spectrum of He-implanted LiNbO3 waveguides,” Phys. Status Solidi C 1(11), 3126–3129 (2004). 26. H.-C. Huang, J. I. Dadap, O. Gaathon, I. P. Herman, R. M. Osgood, Jr., S. Bakhru, and H. Bakhru, “A microRaman spectroscopic investigation of He-irradiation damage in LiNbO3,” Opt. Mater. Express 3(2), 126–142 (2013). 27. V. Caciuc, A. V. Postnikov, and G. Borstel, “Ab initio structure and zone-center phonons in LiNbO3,” Phys. Rev. B 61(13), 8806–8813 (2000). 28. Y. Repelin, E. Husson, F. Bennani, and C. Proust, “Raman spectroscopy of lithium niobate and lithium tantalate. Force field calculations,” J. Phys. Chem. Solids 60(6), 819–825 (1999). 29. B. Mihailova, I. Savatinova, I. Savova, and L. Konstantinov, “Modeling of Raman spectra of H:LiNbO3,” Solid State Commun. 116(1), 11–15 (2000). 30. E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, “Strain profiles in He-implanted waveguide layers of LiNbO3 crystals,” Mater. Lett. 27(1–2), 17–20 (1996). 31. D. Djukic, R. M. Roth, R. M. Osgood, Jr., K. Evans-Lutterodt, H. Bakhru, S. Bakhru, and D. Welch, “X-ray microbeam probing of elastic strains in patterned He implanted single-cyrstal LiNbO3,” Appl. Phys. Lett. 91(11), 112908 (2007). 32. M. R. Tejerina, D. Jaque, and G. A. Torchia, “μ-Raman spectroscopy characterization of LiNbO3 femtosecond laser written waveguides,” J. Appl. Phys. 112(12), 123108 (2012). 33. G. Pezzotti, H. Hagihara, and W. Zhu, “Quantitative investigation of Raman selection rules and validation of the secular equation for trigonal LiNbO3,” J. Phys. D Appl. Phys. 46(14), 145103 (2013). 34. R. V. Damie, “Elastic constants of lithium niobate,” J. Phys. D Appl. Phys. 25(7), 1091–1095 (1992). 35. A. Ofan, L. Zhang, O. Gaathon, S. Bakhru, H. Bakhru, Y. Zhu, D. Welch, and R. M. Osgood, Jr., “Spherical solid He nanometer bubbles in an anisotropic complex oxide,” Phys. Rev. B 82(10), 104113 (2010). 36. A. de Bernabé, C. Prieto, and A. de Andrés, “Effect of stoichiometry on the dynamic mechanical properties of LiNbO3,” J. Appl. Phys. 79(1), 143 (1996). 37. D. A. Freedman, D. Roundy, and T. A. Arias, “Elastic effects of vacancies in strontium titanate: Shortand longrange strain fields, elastic dipole tensors, and chemical strain,” Phys. Rev. B 80(6), 064108 (2009). 38. M. A. Carpenter, R. E. A. McKnight, C. J. Howard, Q. Zhou, B. J. Kennedy, and K. S. Knight, “Characteristic length scale for strain fields around impurity cations in perovskites,” Phys. Rev. B 80(21), 214101 (2009).
منابع مشابه
A micro-Raman spectroscopic investigation of He-irradiation damage in LiNbO3
Imaging micro-Raman spectroscopy is used to investigate the materials physics of radiation damage in congruent LiNbO3 as a result of high-energy (~MeV) He irradiation. This study uses a scanning confocal microscope for high-resolution three-dimensional micro-Raman imaging along with reflection optical microscopy (OM), and scanning electron microscopy (SEM). The tight optical excitation beam in ...
متن کاملLattice Vibration of Layered GaTe Single Crystals
The effect of interlayer interaction on in-layer structure of laminar GaTe crystals was studied according to the lattice vibration using micro-Raman analysis. The results were also confirmed by the first principle calculations. Accordingly, the relationship between lattice vibration and crystal structure was established. Ten peaks were observed in the micro-Raman spectra from 100 cm−1 to 300 cm...
متن کاملX-ray peak broadening analysis in LaMnO3+δ nano-particles with rhombohedral crystal structure
In this work, structural and magnetic properties of LaMnO3+δ compound prepared by citrate precursor method and annealed in presence of oxygen are investigated. The structural characterization of LaMnO3+δ by X-ray powder diffraction and using X’pert package and Fullprof program is evidence for a rhombohedral structure (R-3c space group) confirmed by FTIR measurement. The magnetic measurements sh...
متن کاملLuminescence and excitation energy transfer in new fluoride crystals containing rare earth ions
Spectroscopic characteristics of Pr3+ and Eu3+ in K2Na2GdF7, K5Li2GdF10 and K3GdF6 fluoride matrices are considered. Crystal structures of these compounds have been ascertained based on X-ray measurement on single crystal samples. Energies of lattice vibrations have been derived from IR and Raman spectra. Spectroscopic features of crystals in the VUV region were studied using experimental facil...
متن کامل1 Growth and Properties of Ru Doped Lithium Niobate Crystal
Ruthenium (Ru) doped lithium niobate (LiNbO3) single crystal was grown by the Czochralski method from a congruent melt composition. The color of the Ru: LiNbO3 was red and darkened with the increasing Ru concentration. The amount of Ru concentrated in the grown crystal gradually decreased along the pulling direction because the effective segregation coefficient of Ru in lithium niobate is great...
متن کامل